全国联系热线:
好品质·鼎言造
15366800190
当前位置:
高频淬火和真空热处理
来源: | 作者:鼎言热处理 | 发布时间: 2019-10-15 | 5217 次浏览 | 分享到:
术要点真空高压气冷淬火技术
真空高压气冷等温淬火
真空渗氮技术
真空清洗与干燥技术
历史起源
模具的真空热处理工艺
技术的应用技术要点 真空高压气冷淬火技术 真空高压气冷等温淬火
真空渗氮技术

     高频淬火多数用于工业金属零件表面淬火,是使工件表面产生一定的感应电流,迅速加热零件表面,然后迅速淬火的一种金属热处理方法。感应加热设备,即对工件进行感应加热,以进行表面淬火的设备。感应加热的原理:工件放到感应器内,感应器一般是输入中频或高频交流电 (1000-300000Hz或更高)的空心铜管。产生交变磁场在工件中产生出同频率的感应电流,这种感应电流在工件的分布是不均匀的,在表面强,而在内部很弱,到心部接近于0,利用这个集肤效应,可使工件表面迅速加热,在几秒钟内表面温度上升到800-1000ºC,而心部温度升高很小



   感应加热频率的选择:根据热处理及加热深度的要求选择频率,频率越高加热的深度越浅。   高频(10KHZ以上)加热的深度为0.5-2.5mm, 一般用于中小型零件的加热,如小模数齿轮及中小轴类零件等。   中频(1~10KHZ)加热深度为2-10mm,一般用于直径大的轴类和大中模数的齿轮加热。   工频(50HZ)加热淬硬层深度为10-20mm,一般用于较大尺寸零件的透热,大直径零件(直径Ø300mm以上,如轧辊等)的表面淬火。   感应加热淬火表层淬硬层的深度,取决于交流电的频率,一般是频率高加热深度浅,淬硬层深度也就浅。频率f与加热深度δ的关系,有如下经验公式:δ=20/√f(20°C);δ=500/√f(800°C)。   式中:f为频率,单位为Hz;δ为加热深度,单位为毫米(mm)。   感应加热表面淬火具有表面质量好,脆性小,淬火表面不易氧化脱碳,变形小等优点,所以感应加热设备在金属表面热处理中得到了广泛应用。   感应加热设备是产生特定频率感应电流,进行感应加热及表面淬火处理的设备。
编辑本段感应加热表面淬火的应用
一、应用
  承受扭转、弯曲等交变负荷作用的工件,要求表面层承受比心部更高的应力或耐磨性,需对工件表面提出强化要求,适于含碳量We=0.40~0.50%钢材。
二、工艺方法
  快速加热与立即淬火冷却相结合。   通过快速加热使待加工钢件表面达到淬火温度,不等热量传到中心即迅速冷却,仅使表层淬硬为马氏体,中心仍为未淬火的原来塑性、韧性较好的退火(或正火及调质)组织。
三、主要方法
  感应加热表面淬火(高频、中频、工频),火焰加热表面淬火,电接触加热表面淬火,电解液加热表面淬火,激光加热表面淬火,电子束加热表面淬火。     CH-40KW高频机
[1]
编辑本段表面淬火原理
(一)基本原理:
  将工件放在用空心铜管绕成的感应器内,通入中频或高频交流电后,在工件表面形成同频率的的感应电流,将零件表面迅速加热(几秒钟内即可升温800~1000度,心部仍接近室温)后立即喷水冷却(或浸油淬火),使工件表面层淬硬。(如下面动画所示)
(二)加热频率的选用
  室温时感应电流流入工件表层的深度δ(mm)与电流频率f(HZ)的关系为   频率升高,电流透入深度降低,淬透层降低。   常用的电流频率有:   1、高频加热:100~500KHZ,常用200~300KHZ,为电子管式高频加热,淬硬层深为0.5~2.5mm,适于中小型零件。   2、中频加热:电流频率为500~10000HZ,常用2500~8000HZ,电源设备为机械式中频加热装置或可控硅中频发生器。淬硬层深度2~10 mm。适于较大直径的轴类、中大齿轮等。   3、工频加热:电流频率为50HZ。采用机械式工频加热电源设备,淬硬层深可达10~20mm,适于大直径工件的表面淬火。
(三)、感应加热表面淬火的应用:
  与普通加热淬火比较具有:   
1、加热速度极快,可扩大A体转变温度范围,缩短转变时间。   
2


、淬火后工件表层可得到极细的隐晶马氏体,硬度稍
高(2~3HRC)。脆性较低及较高疲劳强度。   
3、经该工艺处理的工件不易氧化脱碳,甚至有些工件处理后可直接装配使用。   4、淬硬层深,易于控制操作,易于实现机械化,自动化。   五、火焰表面加热淬火   适于中碳钢35、45钢和中碳合金结构钢40Cr及65Mn、灰口铸铁、合金铸铁的火焰表面淬火。是用乙炔-氧或煤气-氧混合气燃烧的火焰喷射快速加热工件。工件表面达到淬火温度后,立即喷水冷却。淬硬层深度为2~6mm,否则会引起工件表面严重过热及变形开裂。   表1 初试工艺及结果   阳压/kV 阳流/A 栅流/A 加热时间/s 冷却介质 淬硬层深度/mm 硬度/HRC 脱碳层深度/mm 

11 3 0.6 8 自来水浸淬 3.4-3.9 54 0.15 
  序号 工艺参数 检测结果 
阳压/kV 阳流/A 栅流/A 加热时间/s 冷却介质 淬硬层深度/mm 硬度/HRC 脱碳层深度/mm 裂纹 
1 11.0 2.4 0.50 7.0 自来水浸淬 3.2-3.8 54 0.120 发现几条细小裂纹 
2 10.5 2.4 0.40 6.5 自来水浸淬 3.2-3.7 55 0.100 存在 
3 10.5 2.2 0.35 5.5 自来水浸淬 2.8-3.3 55 0.030 存在 
4 10.5 2.2 0.35 5.0 自来水浸淬 2.5-3.1 55 0.005 存在

钛合金真空热处理技术研究现状

        真空热处理技术是根据组织性能要求和构件材料的相变规律,选择适合的冷却介质,使得真空加热的材料和构件在真空环境下按照要求的冷却速度冷却至出炉温度。真空热处理常用冷却介质包括:真空淬火油、非含氧气体和水,选择不同的冷却介质具有不同的冷却速率[6],如图3所示。

        1.真空油淬冷却技术

        真空油淬冷却利用的冷却介质为真空淬火油,该技术可以替代盐浴、气氛保护热处理,在获得理想的心部组织和力学性能的同时,保证表面的光洁,特别适用于中、高合金钢的淬火

        目前,真空油淬技术在我国热处理行业应用广泛,通过长期的设备、工艺、淬火油品质的改进,真空油淬技术较为成熟。但是,由于其冷却速率较慢(低于水淬),在钛合金热处理过程中如果控制不得当,容易形成脆性ω相;另一方面,钛合金工件高温加热入油后,在工件表面与油蒸汽接触反应瞬间形成增碳,不利于钛合金性能的提高,因此不太适用于钛合金的真空热处理。


真空热处理科技名词定义
中文名称:真空热处理 英文名称:vacuum heat treatment 定义:在低于一个大气压的环境中进行加热的热处理工艺。 所属学科:机械工程(一级学科);机械工程
(2)_热处理(二级学科);整体热处理(三级学科) 本内容由全国科学技术名词审定委员会审定公布 

百科名片
真空热处理是真空技术与热处理技术相结合的新型热处理技术,真空热处理所处的真空环境指的是低于一个大气压的气氛环境,包括低真空、中等真空、高真空和超高真空,真空热处理实际也属于气氛控制热处理。真空热处理是指热处理工艺的全部和部分在真空状态下进行的,真空热处理可以实现几乎所有的常规热处理所能涉及的热处理工艺,但热处理质量大大提高。与常规热处理相比,真空热处理的同时,可实现无氧化、无脱碳、无渗碳,可去掉工件表面的磷屑,并有脱脂除气等作用,从而达到表面光亮净化的效果。





目录


技术要点真空高压气冷淬火技术
真空高压气冷等温淬火
真空渗氮技术
真空清洗与干燥技术
历史起源
模具的真空热处理工艺
技术的应用技术要点 真空高压气冷淬火技术 真空高压气冷等温淬火 
真空渗氮技术 
真空清洗与干燥技术
历史起源 
模具的真空热处理工艺 
技术的应用
展开 编辑本段技术要点
真空高压气冷淬火技术
  当前真空高压气冷淬火技术发展较快,相继出现了负压(<1×105Pa)高流率气冷、加压(1×105~4×105Pa)气冷、高压(5× 105~10×105Pa)气冷、超高压一(10×105~20×105Pa)气冷等新技术,不但大幅度提高了真空气冷淬火能力,且淬火后工件表面光亮度好,变形小,还有高效、节能、无污染等优点。   真空高压气冷淬火的用途是材料的淬火和回火,不锈钢和特殊合金的固溶、时效,离子渗碳和碳氮共渗,以及真空烧结,钎焊后的冷却和淬火。   用6×105Pa高压氮气冷却淬火时、被冷却的负载只能是松散型的,高速钢(W6Mo5Cr4V2)可淬透至70~100mm,高合金热作模具钢(如 4Cr5MoSiV)可达25~100mm。   用10×105Pa高压氮气冷却淬火时,被冷却负载可以是密集型的,比6×105Pa冷却时负载密度提高约30%~4O%。   用20×105Pa超高压氮气或氦气和氮气的混合气冷却淬火时,被冷却负载是密集的并可捆绑在一起。其密度较6×105Pa氮气冷却时提高80%~150%,可冷却所有的高速钢、高合金钢、热作工模具钢及Cr13%的铬钢和较多的合金油淬钢,如较大尺寸的9Mn2V钢。   具有单独冷却室的双室气冷淬火炉的冷却能力优于相同类型的单室炉。2×105Pa氮气冷却的双室炉的冷却效果和4×105Pa的单室炉相当。但运行成本、维修成本低。由于我国基础材料工业(石墨、钼材等)和配套元器件(电动机)等水平有待提高。所以在提高6×105Pa单室高压真空护质量的同时,发展双室加压和高压气冷淬火炉比较符合我国的国情。
真空高压气冷等温淬火
  形状复杂的较大工件从高温连续进行快速冷却时容易产生变形甚至裂纹。以往可用盐浴等温淬火解决。在单室真空高压气冷淬火炉中能否进行气冷等温淬火呢?图1为在带有对流加热功能的单室高压气冷淬火炉中对两组φ320mm×120mm两块叠装的碳素结构钢用不同冷却方式淬火后的对化结果。图中一组曲线是在102O℃加热后,在6×105Pa压力下连续用高纯氮气冷却(风向是上、下相互交替,40s切换一次)的结果。另一组是对试样表面、心部进行 370℃时的控制冷却。从两组曲线的对比可以看出,心部温度通过50O℃的时间(半冷时间)只差约2min。从表面进行控制冷却开始到心部温度到达 370℃附近,需27min。由此可见,在单室真空高压气淬火炉进行等温气冷淬火是可行的。
真空渗氮技术
  真空渗氮是使用真空炉对钢铁零件进行整体加热、充入少量气体,在低压状态下产生活性氮原子渗入并向钢中扩散而实现硬化的;而离子渗氮是靠晖光放电产生的活性N离子轰击并仅加热钢铁零件表面,发生化学反应生成核化物实现硬化的。   真空渗氛时,将真空炉排气至较高真空度0.133Pa(1×10-3Torr)后,将工件升至,530~560℃,同时送入以氨气为主的,含有活性物质的多种复合气体,并对各种气体的送入量进行精确控制,炉压控制在0.667Pa(5Torr),保温3~5h后,用炉内惰性气体进行快速冷却。不同的材质,经此处理后可得到渗层深为20~80μm、硬度为600~1500HV的硬化层。   真空渗氮有人称为真空排气式氮碳共渗,其特点是通过真空技术,使金属表面活性化和清净化。在加热、保温、冷却的整个热处理过程中,不纯的微量气体被排出,含活性物质的纯净复合气体被送入,使表面层相结构的调整和控制、质量的改善、效率的提高成为可能。经X射线衍射分析证实,真空渗氮处理后,渗层中的化合物层是ε单相组织,没有其他脆性相(如Fe3C、Fe3O4)存在,所以硬度高,韧性好,分布也好。“白层”单相ε化合物层可达到的硬度和材质成分有关。材质中含Cr量越高,硬度也呈增加趋势。Cr13%时,硬度可达到1200HV;含Cr18%(质量分数,余同)时,硬度可达 1500HV;含Cr25%时,硬度可达1700HV。无脆性相的单相ε化合物层的耐磨性比气体氮碳共渗组织的耐磨性高,抗摩擦烧伤、抗热胶合、抗熔敷、抗熔损性能都很优异。但该“白层”的存在对有些模具和零件也有不利之处,易使锻模在锻造初期引起龟裂,焊接修补时易生成针孔。真空渗氮还有一个优点,就是通过对送入炉内的含活化物质的复合气体的种类和量的控制,可以得到几乎没有化合物层(白层),而只有扩散层的组织。其原因可能是在真空炉排气至 0.l33Pa(1×10-3Torr)后形成的,另一个原因是带有活性物质的复合气体在短时间内向钢中扩散形成的组织。这种组织的优点是耐热冲击性、抗龟裂性能优异。因而对实施高温回火的热作模具,如用高速钢或4Cr4MoSiV(H13)钢制模具可以得到表面硬度高、耐磨性好、耐热冲击性好、抗龟裂而又有韧性的综合性能;但仅有扩散层组织时,模具的抗咬合性、耐熔敷、熔损性能不够好。由于模具或机械零件的服役条件和对性能的要求不一,在进行表面热处理时,必需调整表面层的组织和性能。真空渗氮除应用于工模具外,对提高精密齿轮和要求耐磨耐蚀的机械零件以及弹簧等的性能都有明显效果,可接受处理的材质也比较广泛。
真空清洗与干燥技术
  目前有的热处理还离不开清洗干燥工序,尤其需油冷的各类热处理,清洗干燥的任务更繁重、难度也更大。国际上使用效果最佳的清洗剂是卤素系清洗剂。发达国家,如日本使用的卤素系清洗剂的比例如表1所示。其中三氯乙烷、氟里昂因属破坏大气臭氧层物质,已被禁止使用。其他卤素系物质也因对生态环境、人、畜有害而被限制使用。所以各国都在研究各种替代型的清洗干燥技术。
编辑本段历史起源
  真空热处理是将金属工件在 1个大气压以下(即负压下)加热的金属热处理工艺。   20世纪20年代末,随着电真空技术的发展,出现了真空热处理工艺,当时还仅用于退火和脱气。由于设备的限制,这种工艺较长时间未能获得大的进展。60~70年代,陆续研制成功气冷式真空热处理炉、冷壁真空油淬炉和真空加热高压气淬炉等,使真空热处理工艺得到了新的发展。在真空中进行渗碳,在真空中等离子场的作用下进行渗碳、渗氮或渗其他元素的技术进展,又使真空热处理进一步扩大了应用范围。
编辑本段模具的真空热处理工艺
  热处理的发展是伴随着机械制造业的发展而发展,机械制造又对热处理提出了更新更高的要求,模具的热处理又是热处理中技术含量最高的部分。   众所周知,模具热处理就是为了发挥模具材料的潜力,提高模具的使用性能。模具的性能必须满足:高的强度,(包括高温强度,抗冷热疲劳性能)高的硬度(耐磨性能)和高的韧性,并且还要求有良好的机械加工性、(包括良好的抛光性)可焊接性及抗腐蚀性等等。   对模具寿命影响最大的是模具的设计(包括了正确的选择材料)模具的材料,模具的热处理,模具的使用和维护等。如果模具的设计合理,材料优质,那么热处理的好坏直接决定了模具的使用寿命。目前国内外都在设法采用更先进的热处理手段来提高模具的性能延长模具的使用寿命。而真空热处理则是模具热处理中较先进的方式之一。所以从模具热处理来看,热处理加工设备的状态、热处理的工艺、生产过程的控制显得尤为重要。而设备的先进性是保证先进工艺实现的前提。真空高压气淬炉是实现真空热处理最为理想的设备。真空炉具有不脱碳,不氧化的效果,具有温度均匀,加热和冷却速度可控,可以实现不同的工艺过程,真空炉由于没有污染,是国际上公认的“绿色热处理”。现在国际上已有2-20bar的真空高压气淬炉,可以完全满足模具的真空热处理的要求。   模具热处理过程中,所采用的工艺参数对模具性能也有着至关重要的影响:它包括了加热温度、加热速度、保温时间、冷却方式、冷却速度等。正确的热处理工艺参数可以保证模具获得最佳性能,反之,将产生不良甚至严重后果。实践表明,正确的热处理工艺可以获得优良的组织,优良的组织形态才能保证优良的机械性能。合适的工艺方法可以有效的控制模具热处理时的变形和开裂。从实践中发现:模具在加热和冷却过程中,模具表面温度和心部温度的差异(加热的不均匀性和冷却的不均匀性)是造成模具变形的主要因素。(真空炉具有控制加热速度和冷却速度的能力)。不同的工艺方法可以使模具满足不同的使用条件和不同的性能要求。   从模具的使用寿命来看,满足硬度的要求只是达到模具技术要求的一个方面,它还有些性能要求是不好测量的,如强度韧性等等。模具质量的好坏并不能完全用硬度指标来进行认定,它不可能用硬度测量方法最终来检验出模具的使用寿命,热处理作为特殊工序(即特殊过程),它只能通过工艺验证,性能实验,确认合理的工艺参数,并严格实施经确认的工艺参数(工序过程控制)来保证产品质量的可靠性和稳定性。大量数据表明,真空热处理加工的冷冲模具变形较小、很少发生线切割开裂、磨裂的现象。压铸模采用先进的工艺方法,在一定程度上减少模具的龟裂以及使用中粘模的现象。   总而言之,真空高压气淬工艺具有加热和冷却速度自由控制的优点,可以编制不同的工艺参数,得到预想的金相组织和性能。
编辑本段技术的应用
  零件经真空热处理后,畸变小,质量高,且工艺本身操作灵活,无公害。因此真空热处理不仅是某些特殊合金热处理的必要手段,而且在一般工程用钢的热处理中也获得应用,特别是工具、模具和精密耦件等,经真空热处理后使用寿命较一般热处理有较大的提高。例如某些模具经真空热处理后,其寿命比原来盐浴处理的高40~400%,而有许多工具的寿命可提高3~4倍左右。此外,真空加热炉可在较高温度下工作,且工件可以保持洁净的表面,因而能加速化学热处理的吸附和反应过程。因此,某些化学热处理,如渗碳、渗氮、渗铬、渗硼,以及多元共渗都能得到更快、更好的效果。


真空热处理















更多